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Abstract A novel numerical formulation of the two-phase macroscopic balance equations
governing the flow field in incompressible porous media is presented. The numerical model makes
use of the weighted average flux method and total variation diminishing flux limiting techniques,
and results in a second-order accurate scheme. A shock tube study was carried out to examine the
interaction of a normal shock wave with a thin layer of porous, incompressible cellular ceramic
foam. Particular attention was paid to the transmitted and reflected flow fields. The numerical
model was used to simulate the experimental test cases, and their results compared with a view to
validate the numerical model. A phenomenological model is proposed to explain the behaviour of
the transmitted flow field.

Introduction
Many researchers have contributed to the body of literature relating to wave
propagation in porous media. Some of the earliest work by Biot (1956) presents
a mixture theory approach to the modelling of weak acoustic wave propagation
in porous media, which has been used by various researchers to model both
linear and non-linear problems. Baer (1988) and Powers et al. (1989) present
multiphase mixture theory models aimed at simulating the propagation of a
compaction wave in a column of air-saturated granular porous media. In both
cases, good agreement was obtained between the results of the numerical tests
and experimental data for steady wave characteristics. Corapicoglu (1991)
presents an extensive literature survey on work done in the field of mixture
theory wave propagation modelling. This approach yields excellent results
when modelling the propagation of linear waves in porous media. However, as
the work of Rogg et al. (1981) and Powers et al. (1989) have shown, applying
this technique to the propagation of non-linear wave phenomena (i.e. shock
waves) produces poor results.

Levy et al. (1996) state that the processes involved in shock wave
propagation in a porous medium should be modelled using the multiphase
approach. This involves the definition of a system of governing
equations describing the mass, momentum and energy processes in each

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

http://www.emeraldinsight.com/researchregister http://www.emeraldinsight.com/0961-5539.htm

HFF
13,2

178

Received January 2002
Revised September 2002
Accepted October 2002

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 13 No. 2, 2003
pp. 178-198
q MCB UP Limited

0961-5539
DOI 10.1108/09615530310459333



phase, and the interactions between individual phases. Various researchers
have adopted the macroscopic continuum approach to modelling flow in porous
media, as opposed to the theory of mixtures. This involves the introduction of a
macroscopic representative elementary volume (REV) over which the extensive
variables are averaged. The advantage of this method is that it yields
information about the geometry of the porous medium that is not available
using the mixture method.

Hassanizadeh and Gray (1979a, b, 1980) present a continuum approach
technique to macroscopically average the mass, momentum and energy
equations for an n-phase porous medium. The macroscopic balance equations
for an abrupt pressure wave propagating through a porous domain were
developed by Bear and Sorek (1990). The resulting two-phase system of
macroscopic balance equations evolved in time to reveal four distinct periods of
behaviour. Firstly, a period of uniform pressure, temperature and stress
distribution. This occurs at the instant the porous medium is subjected to the
abrupt change in pressure. Secondly, a period of non-linear wave propagation
that is dominated by convection. This is characterised by a sharp, well- defined
compaction wave propagating in the porous medium. Thirdly, a period in
which dissipative effects start to become apparent. The compaction wave in the
porous layer starts to be more affected by the interaction with the internal
surfaces of the porous medium. Finally, a period dominated by dissipative
terms. The viscous dissipation caused by friction on the internal surfaces
characterises the flow. This work was extended by Levy et al. (1995) to provide
a more accurate representation of the momentum and energy processes
resulting from the action of the fluid on the internal surfaces of the porous
medium. This was achieved by including the Forchheimer term in the
macroscopic balance equations, which had been neglected in the model
presented by Bear and Bachmat (1990).

Several numerical and experimental studies have been performed to
examine the effects of shock wave reflection from a sample of porous medium
mounted at the end of the driven section of a shock tube. Levy et al. (1993)
present a shock tube study to examine a shock wave impinging on a sample of
rigid ceramic foam. From the experimental observations, Levy et al. (1993)
deduced a phenomenological model to account for the behaviour of the shock
wave reflected from the front edge of the porous medium sample. This model
suggested that, as the shock wave impinges on the front edge of the porous
medium, a proportion of the wave would be reflected while the rest would
propagate inside. The compaction wave penetrating the porous medium could
be viewed as a sharp front that sweeps through it. As this compaction wave
propagates, parts of it would be reflected from the internal surfaces of the
porous medium. Some of these reflected wavelets would exit from the front
edge of the porous medium and serve to strengthen the initially reflected wave.
Levy et al. (1996) presented a theoretical model of the shock tube problem
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studied in Levy et al. (1993). A numerical formulation of this model was derived
by the application of the high-order finite difference method of Harten (1983).
Numerical solutions were obtained based on the experimental test cases given
in Levy et al. (1993).

Torrens and Wrobel (2002) presented a numerical model, based on the
application of the weighted average flux (WAF) method of Toro (1992), to the
theoretical model of shock wave flow in porous medium discussed in Levy et al.
(1996). The numerical model was used to generate solutions for a shock tube
problem where the domain was occupied entirely by a porous medium. In order
to increase the accuracy of the solutions while preserving stability, various
total variation diminishing (TVD) flux limiting functions were applied to the
WAF-based formulation. It was found that the Superbee limiter of Roe (1983)
was the most suited to the application.

Two new studies are presented in this paper. The first is an experimental
study of a layer of porous media mounted in the middle of the driven section
of a shock tube. The second is a numerical study using the model presented
by Torrens and Wrobel (2002) to simulate the experimental test cases.
A comparison between the numerical and experimental results is presented,
and a phenomenological model is proposed to account for the transmitted wave
behaviour as the shock wave leaves the porous medium.

Governing equations
In this section, the one-dimensional system of multiphase equations governing
the mass, momentum and energy processes in the porous medium are
presented. The complexity of the porous medium geometry renders standard
microscopic level continuum analysis impractical. Applying volume and areal
averaging techniques to the equations governing the microscopic transport of
extensive quantities (mass, momentum and energy) over a macroscopic REV
results in six macroscopic balance equations describing the fluid and solid
mass, momentum and energy processes.

The full system of macroscopic balance equations, obtained under a set
of simplifying assumptions discussed by Levy et al. (1996) and Torrens
and Wrobel (2002), along with the constitutive relationships for stress
and strain in the solid matrix and the equation of state for the gas, are given in
the form:

Mass

›fr f

›t
þ

›fr fuf

›x
¼ 0 ð1Þ

›ð1 2 fÞrs

›t
þ

›ð1 2 fÞrsus

›x
¼ 0 ð2Þ
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where ua and ra are the velocity and density of the a phase (a may be f for the
fluid phase or s for the solid phase), and f denotes the macroscopic porosity of
the porous medium, given by:

f ¼ 1 2
r

bulk

r
S

ð3Þ

where r
bulk

is the bulk density of the porous medium.

Momentum

›fr fuf

›t
þ
›fr fu

2
f

›x
¼ 2CT

›fP

›x
þ CTP

›f

›x
2 CFfr fjuf 2 usjðuf 2 usÞ ð4Þ

›ð1 2 fÞrsus

›t
þ
›ð1 2 fÞrsu

2
s

›x
¼ 2CT

›ð1 2 fÞP

›x
þ

›s 0
s

›x
2 CTP

›f

›x

þ CFfr fjuf 2 usjðuf 2 usÞ

ð5Þ

where P is the pressure, CT is the tortuosity constant describing the directional
cosines of the fluid path through the porous medium, and CF is the Forchheimer
constant.

Energy

›fr f cfT f þ
1
2 u2

f

� �
›t

þ
›fr fuf cfT f þ

1
2 u2

f

� �
›x

¼ 2CT
›fufP

›x
þ CTP

›f

›x
2 CFfr fjuf 2 usjðuf 2 usÞus ð6Þ

›ð1 2 fÞrs csTs þ
1
2 u2

s

� �
›t

þ
›ð1 2 fÞrsus csTs þ

1
2 u2

s

� �
›x

¼ 2CT
›ð1 2 fÞusP

›x
þ

›uss
0
s

›x
2 CTP

›f

›x
þ CFfr fjuf 2 usjðuf 2 usÞus ð7Þ

where Ta and ca are the temperature and specific heat capacity at constant
volume in the a phase.

The effective stress in the solid matrix may be expressed in the following
form:

s 0
s ¼ L112 L2csðTs 2 Ts0

Þ ð8Þ

where L1 and L2 are the Lamé constants for the solid matrix, Ts0
is its

initial temperature and e , the macroscopic strain as a function of porosity, is
defined by:
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1 ¼ 1 2
rs

rs0

where r
s and rs0

are the mass fraction of the solid and its initial value,
respectively. Finally, the second constitutive law – the equation of state for the
fluid – is written in the form

P ¼ r fRT f ð9Þ

where R is the gas constant for air.
The previous system of governing equations may be represented in vector

form as follows:

Ut þ ½FðUÞ�x ¼ Q ð10Þ

where the conserved variable vector, U, is given by:

U ¼ b rf rs mf ms E f Es c ð11Þ

in which ra is the mass fraction in the a phase, ma is the momentum in the a
phase and Ea is the energy in the a phase. These conserved variables are
defined for the fluid phase by:

rf ¼ fr f; mf ¼ rfuf and E f ¼ rf cfT f þ
1=2u

2
f

� �
ð12Þ

and for the solid phase by:

rs ¼ ð1 2 fÞrs; ms ¼ rsus and Es ¼ rs csTs þ
1=2u

2
s

� �
ð13Þ

The flux vector F(U) is given by:

FðUÞ ¼

mf

ms

m2
f

rf
þ CTfP

m2
s

rs
2 s 0

s þ ð1 2 CTfÞP

mf
rf

ðE f þ CTfPÞ

ms
rs

ðEs 2 s 0
s þ ð1 2 CTfÞPÞ

2
6666666666666664

3
7777777777777775

ð14Þ

where the effective stress in the solid is given by:
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s 0
s ¼ L1

rs0
2 rs

rs0

	 

2 L2

Es

rs
2

Es0

rs0

2
m2

s

2r2
s

þ
m2

s0

2r2
s0

 !
ð15Þ

and the fluid pressure is given by:

fP ¼ ðg2 1Þ E f 2
m2

f

2rf

 �
ð16Þ

where g is the ratio of specific heats for air, and the subscript s0 denotes an
initial value. Note that equations (15) and (16) are the constitutive laws
governing the stress-strain relationships in the solid and fluid phases,
respectively.

The source vector, Q, is given by:

Q ¼

0

0
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ð17Þ

Levy et al. (1996) state that the porosity gradient term in the source vector is
assumed to be small. If it were to be large, the nature of the system of equations
represented by equation (10) would not be hyperbolic. This would preclude the
formation of non-linearities in the solution domain.

Solution strategy
The complexity of the macroscopic balance equations described in the previous
section renders a solution by analytical means impossible. This means that a
solution may only be achieved by the application of a numerical method. This
section presents the numerical techniques that were applied to solve
equation (10).

The one-dimensional domain was divided into n computational cells and the
shock tube problem initial data, denoted by Un (where n ¼ 0 as the shock tube
diaphragm is removed), was applied piecewise constant to each cell. In order to
solve equation (10), the following explicit conservative finite difference formula
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was used to update the initial data at time level n to the new values at time
level n þ 1 :

U nþ1
i ¼ U n

i 2 l F n
iþ1

2
2 F n

i21
2

� �
þ DtQ n

i ð18Þ

where U nþ1
i and U n

i denote the conserved variable vectors at time n and time
n þ 1 in the ith computational cell, F n

i^1
2

denote the intercell flux components
upstream and downstream of the ith computational node, and Q n

i denotes the
source vector on the ith computational node, at time n.

The intercell flux and source vector terms must be calculated before the
solution may be updated. In respect of the latter, it is simply a matter of
inserting the values from the conserved variable vector, U n

i ; into the source
vector equation (17). However, in order to evaluate the flux terms, the Riemann
problem must be solved at each intercell boundary. This was achieved by the
application of the WAF method of Toro (1992), coupled with the Superbee flux
limiter method of Roe (1983), to impose a TVD condition on the solution.

Consider the x-t plot shown in Figure 1, which shows the characteristic field
for the Riemann problem between cells i and i þ 1: There are six characteristics
corresponding to the shock, contact and rarefaction waves propagating in the
fluid and solid phases. Regions 1 and 7 represent the known states in the i and
i þ 1 computational cells. Regions 2-6 are the star states where the conserved
variables are unknown. In order to implement the WAF and Superbee methods,
an explicit knowledge of the conserved variables and fluxes in the star regions
is required. In order to achieve this, the method of Roe (1981) was adopted. This
involves linearising equation (10) by the introduction of a parameter vector
averaged across the known states U1 and U7. This results in a constant
Jacobian matrix, Ã. The eigenvalues, eigenvectors and wave strengths of Ã
were found symbolically using Mathematica, and are presented in full by

Figure 1.
Characteristic field for (1)
on x-t diagram
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Torrens and Wrobel (2002). Each of the six characteristics in the solution
domain shown by Figure 1 has an eigenvalue, an eigenvector and a wave
strength associated with it. The star state conserved variables were calculated
using the following expression:

Up ¼ U1 þ
Xp21

j¼1

~aj
~Kð jÞ

�����
p¼2;...;6

ð19Þ

where U1 denotes the known conserved variable vector in region 1, ~aj denotes
the Roe averaged wave strength for the jth characteristic and ~Kð jÞ denotes the
Roe averaged eigenvector associated with the jth characteristic. The star state
fluxes were given by the following expression:

Fp ¼ F1 þ
Xp21

j¼1

~aj
~lj
~Kð jÞ

�����
p¼2;...;6

ð20Þ

where F1 denotes the known flux vectors in region 1 and ~l j denotes the Roe
averaged eigenvalue of the jth characteristic wave. The weighted average
intercell flux is given by the sum of the flux vector in regions 1 to 7 multiplied
by their respective weight. Figure 1 shows a line, AH, subdivided into seven
sections. The length of each of these sections corresponds to the weight of the
section it is in. The following expression gives the WAF intercell flux:

FWAF
iþ1

2
¼
X7

k¼1

bkFk ð21Þ

where Fk denotes the flux in the kth region and bk is the weight, which may be
given by:

bk ¼
1=2ðck 2 ck21Þ ð22Þ

where ck is the Courant number of the kth wave given by:

ck ¼
Dt ~lk

Dx
ð23Þ

The second-order WAF intercell flux is given by:

FWAF
iþ1

2
¼1=2ðF1 þ F7Þ2

1=2

X6

k¼1

ckDFðkÞ ð24Þ
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Note that the flux jump term denoted by DFðkÞ may be replaced by the Roe
averaged flux.

In order to prevent the appearance of oscillations in the solution, the
Superbee flux limiter of Roe (1983) was introduced. This resulted in the
following modification to the WAF flux:

FWAF ¼
1

2
ðF1 þ F7Þ2

1=2

X6

k¼1

sgnðckÞwk ~ak
~lk
~KðkÞ ð25Þ

where sgn(ck) is the sign of the Courant number of the kth characteristic, and wk

is the Superbee flux limiter function. The flux limiter is a function of two
data-dependent parameters. These are the Courant number and the ratio of
upwind to local change of the conserved variables across each wave. The latter
is given by:

rk ¼
r kþ1

f 2 r k
f ji21

2

r kþ1
f 2 r k

f jiþ1
2

ð26Þ

The Superbee flux limiter function may be described as follows:

wðrÞ ¼

1 if r # 0

1 2 2ð1 2 jcjÞr if 0 # r # 1
2

jcj if 1
2 # r # 1

1 2 ð1 2 jcjÞr if 1 # r # 2

2jcj2 1 if r $ 2

8>>>>>>>><
>>>>>>>>:

ð27Þ

Validation of the WAF-based numerical model was carried out by performing
numerical simulations of three test case scenarios, as shown in Figure 2(a)-(c).

Figure 2.
Validation
configurations
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Figure 2(a) shows a plain shock tube, Figure 2(b) shows a shock tube entirely
occupied by porous media while Figure 2(c) shows a shock tube with a sample
of porous medium mounted at the end of the shock tube driven section. The
validation of the first two configurations was presented by Torrens and Wrobel
(2002). The validation of the third configuration was carried out by comparing
experimental results presented by Levy et al. (1993) with solutions generated
by the numerical model presented herein. The initial value problem for this
configuration is shown below:

Uðx;t0Þ¼

UL x lies to the left of the diaphragm

UR1 where x lies to the right of the diaphragm in a one phase cell

UR2 x lies to the right of the diaphragm in a two phase cell

8>><
>>:

ð28Þ

In defining the initial value problem, it was assumed that the air in the shock tube
is initially quiescent, the temperature in the solid and fluid phases is 293 K at all
points in the domain, and the specific heat capacities of the solid and fluid are 718
and 870 kJ/kg/K, respectively. The initial pressures and porous medium
geometry coefficients are given in Table I. This information was used to calculate
the conserved variable vectors UL, UR1 and UR2, which may be defined by:

UL ¼

4:17

0

0

0

877259:58

0

2
66666666664

3
77777777775
; UR1 ¼

1:2

0

0

0

253489:02

0

2
66666666664

3
77777777775

and UR2 ¼

0:88

548:1

0

0

185129:12

1:397£108

2
66666666664

3
77777777775

ð29Þ

The grid sensitivity of the present numerical scheme was examined in Torrens
and Wrobel (2002). To effectively model a 1.6 m long domain, occupied entirely
by porous medium, at least 400 computational nodes were required. The total
number of computational cells used in the solution to the system (equation 10)
with initial conditions (equation 28) was 400, with 50 of the cells being placed on
the porous medium.

Initial pressure in driver section 351,325 Pa
Initial pressure in driven section 101,325 Pa
Initial porosity 0.73
Forchheimer constant 300 m21

Tortuosity constant 0.7

Table I.
Initial parameters

for validation of
configuration (c)
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Figures 3 and 4 show pressure-time curves of the numerical solution to the
problem defined by equation (29). These correspond to the two observation
points at which the pressure was measured at each time step. These were
positioned 10 cm behind and 10 cm ahead of the air-porous medium interface.
The pressure history in Figure 3 is initially at atmospheric pressure, as the
observation point is positioned in the driven section. When the shock wave
reaches it, the pressure jumps to approximately 180 kPa (the magnitude of the
initial shock wave). The same pressure is observed until the reflected shock
wave from the air-porous medium interface reaches it. The pressure then jumps
to approximately 250 kPa. These pressure values are consistent with the values

Figure 4.
Pressure history for
configuration (c) taken at
an observation point just
ahead of the air/porous
medium interface

Figure 3.
Pressure history for
configuration (c) taken at
an observation point just
behind the air/porous
medium interface
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predicted by Levy et al. (1996). The shape and magnitude of the pressure-time
curve in Figure 4 also correspond well with those of Levy et al. (1996).

Experimental study
This section details the methods used to obtain experimental pressure histories
of the shock wave reflected from the front edge of the porous medium layer and
the wave transmitted from the back edge. The experimental study of shock
propagation through a layer of porous medium was carried out in a shock tube
with internal diameter of 55 mm. Figure 5 shows a schematic of the shock tube,
illustrating the position of the porous layer and the position of the pressure
transducers used to obtain the pressure histories ahead of, and behind, the
porous layer.

The two transducers used to measure the transient pressure were
piezoelectric transducers manufactured by Kistler Instruments Ltd.
Transducer 1 in Figure 5, located 90 mm behind the front edge of the porous
layer, was a model 701a sensor while transducer 2, situated 90 mm ahead of the
back face of the porous layer, was a model 7001 sensor. The use of these
sensors was recommended by Kistler Instruments (2000). Both sensors have
the same pressure range (0-250 bar) and sensitivity (80 pC/bar).

The porous medium used in this experimental study was a rigid porous
ceramic foam called Sivex, supplied by Pyrotek (UK) Limited. Three grades of
the ceramic foam were tested: these were 10, 20 and 30 pores per inch. The
samples were cut into disks from 50 mm thick plates, and placed in the driven
section of the shock tube as indicated in Figure 5.

The three grades of porous foam were tested at three different initial shock
tube diaphragm pressure ratios. The driven section of the shock tube remained
at atmospheric pressure, while the driver section pressure was set to 6, 5 and
4 bar, resulting in diaphragm pressure ratios of 6-1, 5-1 and 4-1. This resulted in
a series of nine sets of experimental results. Each set consisted of two pressure
histories, the first from transducer 1 showing the behaviour of the shock wave
reflected from the front edge of the porous medium, and the second from
transducer 2 showing the behaviour of waves transmitted from the back edge
of the porous layer.

Figure 5.
Schematic of

experimental set-up
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Each experimental set was repeated five times, although the porous sample
was not changed during the repeatability tests. The reason for this was
twofold: first, preliminary tests indicated that the porous material was
sufficiently strong not to undergo any physical damage as a result of the
interaction with the shock wave; and second, to ensure repeatability was not
compromised.

Since the shock tube was constructed from a plastic material, it was
susceptible to vibration. This vibration was transferred through the body of the
tube to the pressure instrumentation. As a result of this, there is inherent noise
in every experimental pressure history presented herein.

Comparison between experimental and numerical results
The experimental test cases described above were simulated using the WAF-
based numerical formulation of the system of equation (10). In order to achieve
this, it was necessary to define several key material constants relating to the
three grades of porous medium. These were the Lamé constants, the
Forchheimer coefficient, the tortuosity coefficient and the density of the solid
substrate. The porous medium under consideration was the same material used
by Levy et al. (1993) in their experimental investigation of shock wave
interaction with a sample of porous medium mounted at the end of a shock
tube. They presented material constants for the 10, 20 and 30 ppi porous
samples, which are detailed in Table II.

Figure 6(a)-(c) shows a comparison between the experimental and numerical
pressure histories at the first transducer position (i.e. before the porous layer).
Figure 7(a)-(c) shows a comparison for the second transducer position (i.e. after
the porous layer). A phenomenological model of the interaction of a shock wave
with the front edge of a rigid porous foam is examined in detail by Levy et al.
(1993). This model serves to clarify the behaviour observed in the shaded
regions in Figure 6(a)-(c). The first shaded region shows the initial shock wave,
resulting from the diaphragm burst, as it passes the first transducer. The
second shows the wave reflected from the front edge of the porous layer. The
third shows an increase in pressure behind the reflected wave due to reflections

Sivex grade
Material property 10 ppi 20 ppi 30 ppi

Solid substrate density rs 2,000 kg/m3

Air porosity f 0.728 0.745 0.814
Tortuosity CT 0.7 0.7 0.75
Forchheimer constant CF 300 m21 500 m21 900 m21

Solid substrate specific heat capacity at constant
volume cv 840 kJ/kg/K
Mechanical strain Lamé coefficient L1 3,800 MPa
Thermal strain Lamé coefficient L2 26.207 kg/m3

Table II.
Material properties
for rigid porous
foam samples
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Figure 6.
Pressure histories for

experimental and
numerical results at first

transducer position:
(a) 10 ppi, (b) 20 ppi, and

(c) 30 ppi
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Figure 7.
Pressure histories for
experimental and
numerical results at
second transducer
position: (a) 10 ppi,
(b) 20 ppi, and (c) 30 ppi
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from internal surfaces of the porous medium, emerging from its front edge and
travelling back up the shock tube. Figure 6(a)-(c) shows the good correlation
obtained between the experimental and numerical results.

The shaded regions in Figure 7(a)-(c) highlight areas of interest pertaining to
the wave behaviour at the back edge of the porous sample. Figure 8(a)-(e)
shows five successive time snapshots illustrating this behaviour. Figure 8(a)
shows the initial compaction wave, resulting from the incidence of the initial
shock wave on the porous layer, propagating towards the back edge. The
second illustration shows two waves. The first is the initial compaction wave
which has emerged from the porous layer and is propagating towards the
second sensor. The second, represented in the figure by a broken line, is a
dispersed compaction wave propagating towards the back edge of the porous
layer. This second wave results from reflections of the primary wave from the
internal surfaces of the porous medium. This concept is consistent with the
phenomenological model of Levy et al. (1993).

Figure 8(c) shows a dispersed compaction wave that has just emerged from
the back edge of the porous layer. Ahead of it, the initial compaction wave has
reached the transducer, at which point it will perceive a pressure increase. This
corresponds to the pressure jump highlighted by the first shaded area in
Figure 7. Figure 8(d) shows that the initial compaction wave has propagated
further down the tube, while the dispersed compaction wave behind it has
reached the transducer. At this point, the transducer perceives a higher

Figure 8.
Wave propagation at the
back edge of the porous

layer
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pressure which corresponds to the small pressure jump highlighted in the
second shaded area in Figure 7. This rise is not evident in the experimental
pressure histories, as the noise inherent in the signal precluded sufficient
resolution of the results. However, a gradual increase in pressure from the first
to the third shaded regions in Figure 7(a)-(c) highlights an increase in strength
of the emerging wave.

It is obvious that, when compared with the results in Figure 6(a)-(c), the
experimental and numerical results in Figure 7(a)-(c) do not correlate as well.
Although the numerical results do predict a jump in pressure, they consistently
over predict the experiments by 10-20 kPa. The third shaded region in
Figure 7(a)-(c) shows a fall off in the experimentally observed pressure which is
not mirrored by the numerical results.

The primary reason the numerical results overpredict the experimental
results lies in some of the assumptions made to simplify the system of
governing equations in order to produce the numerical model (Torrens and
Wrobel, 2002). Of the assumptions made, the two that are of more interest are:
(a) the fluid is ideal and therefore does not experience any viscous dissipative
forces, and (b) the energy processes in the fluid and the solid are reversible.

First consider assumption (a). On entering the porous layer, the shock wave
is subject to many internal surfaces with which it may interact. Levy et al.
(1995) present an evolution on the governing macroscopic balance equations.
They identified four distinct time periods in which the behaviour of the
equations changes from convection-dominated to diffusion-dominated. The
first is a period of uniform pressure, temperature and stress distribution. This
occurs at the instant the porous medium is subjected to the abrupt change in
pressure. The second is a period of non-linear wave propagation that is
dominated by convection. This is characterised by a sharp, well-defined
compaction wave propagating in the porous medium. This is the time period
that is most effectively modelled by the numerical model presented here.
The third is a period in which dissipative effects start to become apparent.
The compaction wave in the porous layer starts to be more affected by the
interaction with the internal surfaces of the porous medium. The final period is
dominated by dissipative terms. The viscous dissipation caused by friction on
the internal surfaces characterises the flow. The behaviour of the flow during
the third and fourth evolutionary periods contradicts the Eulerian flow
assumption made by the mathematical model.

Adherence to assumption (b) would mean that the flow is assumed to be
isentropic (i.e. no energy is lost to the environment due to friction).
However, from the discussion presented above, it is clear that if the flow is in
either the third or fourth evolutionary period, then viscous dissipation (or drag)
on the internal surfaces of the porous medium would play a role in
characterising the flow. This viscous drag would render the flow anisentropic.
Neglecting the viscous dissipation or the anisentropic nature of the flow could
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account for a proportion of the over prediction of the numerical results that was
observed in Figure 7(a)-(c).

The second discrepancy between the numerical and experimental results
presented in Figure 7(a)-(c) relates to the fall in pressure observed in the third
shaded region. This phenomenon occurred consistently throughout all of the
transducer two pressure histories for all test cases. The cause of this would be
closely linked with the explanation for the over prediction of numerical results
given above.

Phenomenological model
Skews et al. (1992) presented a phenomenological model to account for the
behaviour of compressible porous foams under shock loading conditions. This
model was extended by Levy et al. (1993) to explain experimental observations
made for shock wave interaction with rigid porous foams, for the specific case
of the porous medium shock tube problem configuration as shown in Figure 2(c)
where a porous medium sample is mounted in a shock tube with its back edge
flush with the tube end wall. Figure 9 shows a characteristic plot illustrating
this configuration.

Four types of characteristics can be seen in Figure 9. These are the initial
shock wave incident on the front edge of the porous medium (SI ), the reflected
shock wave (SR), the compaction wave transmitted into the porous medium
(CT), and the dispersed compaction waves resulting from reflections from
internal surfaces (CR). The latter type of characteristic is shown by broken
lines. Part of these waves propagate towards the end wall and are reflected,

Figure 9.
Characteristic x-t

diagram for
phenomenological model

of Levy et al. (1993)
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while compaction waves are reflected out of the front edge of the porous
medium. It can be seen in the figure that the reflected shock wave is
strengthened as a result of the superposition of the compaction waves
emerging from the front edge of the porous sample.

Figure 10 shows a characteristic diagram of the proposed extension to the
phenomenological model of Levy et al. (1993). In this case, five distinct wave
groups appear in Figure 10, the same four as in Figure 9 and an extra wave
transmitted from the back edge of the porous layer (ST). The dispersed
compaction waves are shown as broken lines.

The extension of the model lies in the transmission of the compaction wave
(CT) from the back edge of the porous sample back into the single-phase shock
tube. The main compaction wave transmitted through the porous medium
emerges from the back edge and forms a shock wave (ST) which continues to
propagate down the shock tube. The forward running dispersed compaction
waves emerge from the back edge of the porous medium. As with the reflected
shock wave, these dispersed compaction waves serve to strengthen
the transmitted shock wave. This extension to the phenomenological
model is based on observations made of the sensor two pressure histories
previously shown.

Conclusions
A TVD flux limited WAF-based numerical formulation of the two phase
macroscopic balance equations has been utilised to carry out a study of shock
wave propagation through a layer of a rigid porous medium. This differed from
previous studies in that the compaction wave propagating through the porous

Figure 10.
Characteristic x-t
diagram for proposed
phenomenological model
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layer was transmitted into the single phase flow at the back face of the porous
layer. A shock tube-based experimental study was performed for the purpose
of validating the numerical model.

Excellent agreement was observed between the experimental and the
numerical results for the wave reflected from the front edge of the porous layer.
However, the correlation between the experimental and numerical results of the
wave transmitted from the back edge of the porous layer was not as good. This
was thought to be caused by modelling assumptions that result in neglecting
viscous dissipation and flow irreversibilities that occur within the porous
medium.

The increase in strength of the wave transmitted from the back edge of the
porous layer was caused by the accumulation of dispersed compaction waves
resulting from reflections from the internal surfaces of the porous layer. This
inference led to the phenomenological model that has been proposed to describe
the wave behaviour before and after the porous sample.
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